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Two H~ Controllers are presented for a seeker scan loop system which has model uncertainty 

and is subject to external disturbance. The controllers are designed using a new H~, control 

framework formulated by combining the mixed sensitivity and model matching approaches for 

one- and two-degree-of-freedom control structures. The proposed control methods are able to 

reflect not only frequency domain specifications but also time domain ones such as transient 

response characteristics and multivariable interaction between output channels, contrary to the 

mixed sensitivity problem. It is shown that the two-degree-of-f reedom H~ controller offers 

better performance and robustness than one-degree-of-freedom H~ controller, but both control- 

lers are very effective for the seeker scan loop system. 

Key Words: H= Controllers, Seeker Scan Loop System, One- and Two-Degree -o f -Freedom 

Control Structures, Model Matching 

1. Introduction 

The target lock-on during the flight after the 

missile launch has been widely used in order to 

extend the lock-on range of short range homing 

missiles. Because a missile seeker has a narrow 

field-of-view (FOV),  the seeker scan loop system 

searches for a target during flight by making the 

spinning axis of the seeker follow scanning com- 

mands of missile guidance unit for achieving a 

good acquisition of a target within its FOV. 

Therefore, the target acquisition probabili ty of a 

missile is affected by the pointing and scanning 

accuracies of the seeker. There are two main 

factors lhat degrade the accuracy of the seeker 

scan loop system, i. e., disturbances and modeling 

uncertainties. Firstly, the firing impulse, dynamic 

unbalance of the spinning gyro, and a large lat- 

eral acceleration during the missile maneuvering 

act as disturbances on the seeker scan loop sys- 

tem. Secondly, modelling error due to the base 

-band modelling procedure reduces the stability 

margin of the scan loop system. In addition to 
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these points, as the seeker scan loop system is 

composed of high spinning gyro with nonlinear 

dynamics and the driving electronics modulated 

in spinning frequency, it is very difficult to obtain 

an accurate mathematical model. Therefore, to 

improve the target acquisition probabil i ty of  a 

missile in the presence of the disturbances and 

model uncertainties, it is essential to introduce 

robust control methodologies (Hwang et al., 

1993). 
H~ optimization theory is developing rapidly 

in the robust control research (Zames, 1981; 

Doyle et al. 1989). The mixed sensitivity problem 

which is widely used in H~ optimization hardly 

capture important objectives such as multivariable 

interaction, and causes the unnecessary pole-zero 
cancellation (Tsai et al., 1992). Also, this method 

leads to unbalanced input and output perfor- 

mance and robustness properties, and therefore it 

may be ineffective if, for instance, performances 

are needed at the output of the plant while robust- 

ness is required at the input (Mammar et al., 

1992). The idea of the model matching problem is 

to design a stabilizing controller so that the 

output of the c losed- loop system follows the 

output of a desired model (Ho. et al., 1992). The 

desired model is generally chosen considering the 
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low multivariable interaction requirement. The 

closed loop system resulting from a minimal H= 

model matching problem, however, may have 
poor stability robustness. 

The main goals of this paper are to propose 

two H= controllers for a seeker scan loop system 

in order to improve the scanning performances. 

The controllers are designed in the framework of 

the standard H~ optimization problem by com- 

bining the mixed sensitivity and model matching 

problems for one- and two-degree-oGfreedom 

control structures. Several performances for a 

seeker scan loop system are evaluated and, in 

particular, scanning performances are investigat- 
ed intensively. 

2. Seeker Scan Loop Dynamics 

Figure 1 shows the conceptional description for 

obtaining a mathematical model of the seeker 

scan loop system. 

The seeker scan loop system is composed of a 

spinning gyro-optics assembly and related signal 

processors. Because the gyro is spinning with a 

constant angular rate for the purpose of a stable 

pointing capability, the carrier frequency of every 

signal processor is synchronized with the gyro 

spinning frequency. The modulator  converts two 

control input signals in the pitch yaw plane 

which are piecewise constants between two sam- 

pling instants into a rectangular wave. Because 

the frequency components of a rectangular signal 

consist of the integer multiple of the fundamental 

frequency, only the fundamental frequency which 

uo ~ Precession Amplifier~ 

 co,, 
Fig. 1 Open loop configuration of a seeker scan 

loop. 

coincides with the gyro spin frequency passes 

through band pass filter (BPF).  The precession 

amplifier converts the BPF output voltage into 

the current which is proport ional  to the preces- 

sion torque to the gyro. The voltage which is 

induced in the solenoidal coils around the gyro 

rotor magnet is proport ional  to the component of 

the velocity of the magnetic pole of the rotor 

along the centerline of the solenoid. The mea- 

sured gyro position by the cage coil is the 

sinusoidal wave form, which represents the mag- 

nitude and phase in polar coordinate. The 

sinusoidal signal is demodulated to two DC 

magnitudes in pi tch-yaw plane. The gyro driving 

signal generator makes two control inputs at the 

controller block from angle errors between exter- 

nal pointing or scanning commands and the 

measured position of the gyro spinning axis in the 

pitch and yaw directions. These control inputs are 

modulated in the polar form with the gyro spin- 

ning frequency. The mathematical equations of 

all signal processors have been fully described by 

Hwang and Lee (1993). In Fig. 1, the dynamic 

equations of the gyro can be described as follows: 

Gl(S)&(s) G~(s)r -T~,r (l) 
G l ( s ) r  + TpOe(s) (2) 

G1 (s) -- Is" + Ds + K (3) 

G2(s) = H s  (4) 

where I ,  D, K denote the inertia, the damp- 

ing constant, and the direct-axis spring constant 

of the gyro; H is the angular momentum of the 

gyro: Tv is the precession torque constant: &( �9 ) 

and (,,( �9 ) denote the gyro gimbal angle in the 

pitch and yaw axes: 0 g ( ' )  and C g ( . )  denote 

the input current proport ional  to the precession 

torque in the pitch and yaw axes, respectively. A 

state-space representation of the seeker scan loop 
system is given by (Hwang et al., 1993) 

,~(t) A x ( t ) + B u ( t )  (5) 

y ( t )  = C x ( t )  (6) 

where the system matrices A ~ R  1~215176 B E  

R '~*z, and C ~ R  2•176 are: 
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u ( t ) = [ u o  ur T, y ( t ) = [ O ~  Cyl ~ 

0 0 0 0 

23.2 -23 .2  0 0 

--902 902 0 0 

0 0 0 0 

0 0 0 0 

0 0 0 0 

0 0 0 0 

267 -- 267 0 0 

0 0 0 1 

0 89673 --4891 --140 

The linear model of the seeker scan loop 

includes 10 state variables, and two-input and 

two-output variables, where the states are : 

Og, Cg: currents proportional to the preces- 

sion torque in the pitch and yaw axes (A) 

0~, r gyro gimbal angles in the pitch and 

yaw axe,,', (deg) 

0~, r gyro angular rates in the pitch and 

yaw axes; (deg/s) 

0p, Cy: demodulator outputs in the pitch and 

yaw axe~,; (V) 

0p, q~y: derivative of the demodulator outputs 

in the pitch and yaw axes (V/s), 

and the input and output variables are 

uo, ur control inputs in the pitch and yaw 

axes (V) 

0p, (,y: plants output in the pitch and yaw 

axes (V). 

The seeker scan loop model is both control- 

lable and observable. The seeker scan loop has an 

integrator in both the pitch and yaw channels, 

and hence the zero steady state errors are expected 

to position commands for the closed loop system. 

Due to the dynamics of the gyro and cage coil, the 

interaction between the pitch and yaw channels 

occurs. The plant zeros are at _+23.2j and the 

poles are at 0, 0, -50.3,  50.3, -68.5,  - 68.5, 

-- 71.4, -- 71.4, -- 267 • 925j. 

3. H~o Optimization Problem 
with Model Matching 

3.1 One-degree-of - freedom Ha control 
problem 

Figure 2 shows one-degree-o~freedom Ha 

control problem including model matching. 

All weighting functions have deep influence on 

the performance and stability of the closed-loop 

system. The desired closed-loop model, Tm is 

chosen considering design requirements in the 

t ime-domain such as overshoot and settling time. 

The choice of T,, is dictated by specific control 

design problems and relies on the experience of 

designer. The rule of thumb is that the dynamics 

should be simple with low order, in Fig. 2, the 

controlled output 

Yc = G S i K W r r  + GS,. Wad  - G S i K W ~ n  (7) 

u : :  S i K W r r -  S , . K G W a d  S K W ,  n (8) 

where S i :  ( I + K G )  

The elements of the vector, z, which is to be 

minimized for better performance of the control 

system, are given by 

z~= W~ (Tm W,-r -y~) 

J 

Fig. 2 

>..~]-~ zl 

zz 

L 

One-degree-of-freedom H= control problem. 
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= W1 ( T ~ -  GSiK)  W~r - W1GSiWad 

+ W~GSiKW.n  (9) 

z 2 = W z u  

= W2S~KW~r-  W 2 S i K G W a d -  W2SiKW,  n 
(10) 

z3 = W3yc 

= W3GS~KWrr+ VV3GS,.Wud- W~GS~KW, n 

[ I/V1 Tm GSiK)  Wr ( 

_ I VI/aSiK Wr 
"/~'w = ] W a G S i K W r  

L W4 (1 -- GSiI~) Wr 
The remaining work is how to formulate the 

proposed H~ control problem into the framework 

of the standard H .  optimization problem shown 
in Fig. 3. 

In Fig 3, w is a vector of all the signals entering 

the system which include the reference input, the 

disturbance and the sensor noise, z is a vector of 

all the signals to possibly characterize the behav- 

ior of the c losed- loop system, u is the vector of 

control signals, and y is the vector of measured 

outputs. 

The standard H .  optimization problem is to 

find a stabilizing controller such that 

minimize [I F~(P, K )  I[= (14) 

whrer F~ (P,  K )  = Pu + P~2 ( I -  KP22) -XKP2~, 

(15) 

P = [ P "  P'~] (16/ 
P21 P2zJ 

Note that the transfer functions /:111, P~2, P2~ 

and P22 are derived from the plant dynamics, 

weighting functions for the signals z and w, and 

the desired c losed- loop model. 

The design objective is to obtain an internally 

stabilizing controller K such that 

II F , ( P ,  K) II ~ < 7  (17) 

] P LZ,j 

u y 

K 

Fig. 3 Linear fractional transformation. 

(11) 

z4= W 4 ( W r r - y c +  Wnn) 

= W 4 ( I - G S i K )  W r r -  W4GSiWad 

- W 4 ( I -  GS~K) W . n  (12) 

Using Eqs. (9 ) - - (12) ,  we obtain the cost trans- 
fer function from 

w = [ r r  d r nr] r to z = [ z l r  zzr z3r z4r] r as 

- W1G Si Wa Wt G Si K Wn ] 

- Wz K G S i Wa - Wz S, K W~ I (13) 
I/V3 G S~ W. - W3 G S~ K W. I 

i 

- W4 G Si W~ - VV4(1-GSiK)  W.J 

where y > 7m~n and 

i n f  
II F~(P, K)II ~ (18) 7rain = stabilizing K 

Since we do not know 7rain in advance, the param- 

eter y is obtained in an iterative manner until a 

suitable design is achieved. 

If we represent Eq. (13) into linear fractional 

transformation shown in Fig. 3, the elements of p 

are given by 

/911 : W3G Wd ~ ' 

L W~Wr - V V ~ G W ~ - W , W .  

[-WIG l 
P12=[ w3WG [' 

L -  WnG] 
P2 ,=[W~--GWd -- W.], P2~=[-G] (191 

Therefore, the proposed Ha control problem 

can be formulated as the standard H= optimiza- 

tion problem. For the stabilizing controllers for 

Eq. (19), D G K F  algorithm (Doyle et al., 1989) 

provides very simple state-space formulas for all 

stabilizing controllers by solving two algebraic 

Riccati equations, once Eq. (19) is represented as 
a state space realization. 

If we define 

T m = C m ( s I -  Am)-~Bm + D,. (20) 

G =  C~ ( s I -  Ap) -~ B ,  + Dp (21) 

W i : C w i ( s l - A w , - )  1Bwi+Dwi, 
i : l ,  2, 3, 4 (22) 

Wr : Cwr ( sI  - Awr ) l l~wr + D ~  (23) 

Wa = C~a (sI - A~a) -IBwa + Dwa (24) 
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W~ = C~o. (sI  - A~ . )  - '  B~,  + D~, (25) 
then a state space realization of P is given by 

x (l)  = A x  (t)  +B~w (t)  +B2u  (t)  
A,~ 0 0 0 

Bw~ C~ A ~  0 0 
0 0 A~2 0 

A =  

0 0 0 Aw3 
0 0 0 0 

0 0 0 0 

0 0 0 0 

0 0 0 0 

0 0 0 0 

z ( t ) = C , x ( t ) + D n w ( t ) + D ~ 2 u ( t )  (27) 

y ( t)  = C2x ( t)  +D21w (t)  +D22u (t)  (28) 

(26) where 

0 B,,C,or 0 

0 B~,IDmCw~-BwlDoCwd 
0 0 0 

0 0 Bw3Dt, Cwe 

Aw4 Bw4C~.r -- Bw41)Cwe 
0 A ~  0 

0 0 Awe 
0 0 0 

0 0 BpCwa 

0 0 . 

0 - B w l C p  
0 0 

0 Bw3Cp 

-- Bw4Cwn -- Bw4Cp 
0 0 

0 0 

A ~ ,  0 

0 A ,  

�9 BmDw~ 
B~D~.Dw~ 

0 

0 

BI = B~4Dwr 

Bwr 
0 

0 

0 

c ~ = [ o  o o 0 

D.=] o 
[_ Dw4Dwr 

0 0 

- B~IDpDwa 0 
0 0 

BwaDpDwd 0 

- Bw4DpDwa - Bw~D~. 
0 0 

B~d 0 

0 Bin, 

B,D~e 0 

I _  BOIDp 

I Bw2 

I Bw3Dp 

B2= l- B~4Di' 
0 

0 

Bi, 

O 0  0 Dw,DmCw~-Dw,DpCwe 0 -D~lCpl 
C~2 0 0 0 0 0 o [ 

0 Cw3 0 0 Dw3DpCw~ 0 Dw3C~ I' 

0 0 Cw4 Dw4Cw~ -Dw4DpCwe -Dw4Cwn -Dw4CpJ 
1 

0 Cwr -DpCwd - Cwn - Cp], 

0 0 Dw2 l, 
DwsDpD~e 0 ' D12= Dw3Dp | 

- Dw4DpD~a - Dw4D~. - Dw4Dp] 

D21 = [ D~o,-  D o D ~ e -  Dw~], D22 = E-Do]  

3.2 Two-degree-of-freedom H~ control 
problem 

We suggest a modified two-degree-of-freedom 

control structure as shown in Fig. 4. The feedfor- 

ward controller K~ is primarily to improve track- 

ing performance and the feedback controller K2 is 

to reject the disturbance and to robustly stabilize 

the plant G. 
Compared with the conventional structure, the 

controller K~ in the feedforward loop is located 

inside the c losed-loop in the modified structure. 

In the modified structure, W2 is selected as a high 

-pass filter or constant to suppress the high fre- 

quency components to enter the plant, while W4 is 

(29) 

selected as a low-pass filter to improve the steady 

state accuracy. All weighting functions and the 

desired c losed- loop model in Fig. 4 serve the 

same purposes as those in Fig. 2. In Fig. 4, the 

)+ 

Fig. 4 Two-degree-of-freedom H~ control problem. 
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controlled output yG and the control input u are 

given by 

yc--  GS/A~ Wrr + GS/  Wad + GS," 
( --/-(1+ K2) ~/nn (30) 

u =  S/K~ Wrr + S," ( -  K~ + K2) GWdd 
+ S / ( - h ~  +K2) W.n (31) 

where S / = { I -  ( KI+KZ) G} -1. 
The exogenous output vectors are given by 

el= WI ( Tm W~r Yc) 
Wl(Tm GS,.'K1) W r r -  W1GSi'Wad 

-- W1GS/ ( -  K~ + A~) Wnn, (32) 

I ~q ( Tm G&.'Kt) Wr 
I W~S,.'K1 W~ 

Taw:[  WaGSi'A1Wr 
L W 4 ( I - G S / K O  W~ 

If we represent Eq. (36) into linear fractional 

transformation shown in Fig. 3, the elements of P 

are given by 

P " = [  0 Wa G 0 l '  
L w4 w~ W4 G W ~ - W 4  [15, 

W~ 

L-m Gj 
P 2 1 = [ ?  -(frWa - Wn C] 

Z2 ~ W214 
= W2S/KI Wrr+ W 2 S / ( - K I + K O  GWed 

+ W2Si ' ( -KI+K2)  ~Tnll (33) 

Za = W3yG 
= WaGS/K1W~r+ W3GS/W~d+ WAGS/ 

(1421+145.,.) W,,n (34) 

z4 = W4( W ~ r - y c -  W,n) 
= W4(I-GSi 'AS)  W r r -  W4GSi'Wdd 

- W4{I+G&'( -K~+K2)}W~n (35) 

From Eqs. (32) - - (35) .  we obtain the cost 

transfer function from w =  ~rrdrn r]r to Z--  [&r 
,~2 T Z3 T ~4T~ it' a s  

- W~GSi'Wd - W1GSi'(-A~+K2) ~ ] 
W2S,. ' (-KI+K2)GW~ WzSi ' ( -KI+K2)  W, ] 

(36) 
~3GSi'Wd W3GSi'(-KI+I~,z) Wn [ 

1 

- W 4 G S / W d  - W 4 { I + G S i ' ( - K I + I ( e ) } W n J  

(37) 

Note that Eq. (37) are the same as Eq. (19) 

except that the second rows of P21 and P22 are 

added in Eq. (37). By recalling Eqs. (20) - - (25) ,  

a state space realization of P such that Eqs. (26) 

- - (28)  is obtained as follows: 

A,  B~, B2, Ca, DI~, and Dl2 are exactly the 

same as those of Eq. (29). Cz, DZl ,  and D22 
contain the second rows compared with those of 

Eq. (29) as shown in the following matrices. 

[ ~ o o o o  Cwr -DpCw~ Cw,, Cp] 
C2= 0 0 0 0 0 DpCu,d Cwn Cp 

D~Dwd D,,,, J' 

4. Hoo Controller Design 

4.1 Design specifications 
One of performance requirements is to obtain 

zero steady state error to step reference inputs in 

each channel. Since there exists an integrator in 

each channel of the seeker scan loop, it is not 

necessary to augment an additional integrator. 

Another requirement is to reject disturbances at 

low frequency region, and is expressed as follows: 

II eH~ -<0.1 for w<0.1 rad/sec whenever [I d[12 <-1 

or II rtl2-< I. (38) 

The above requirement indicates that at fre- 

quencies less than 0.1 rad/sec, the closed-loop 

system should reject disturbances at the output by 

a factor of 10-to 1. Expressed differently, steady 

-state tracking errors in both channels, due to 

reference step inputs in either channel should be 

on the order of 0.1 or smaller. Other performance 

requirements are to achieve a bandwidth of about 

15 rad/s  for each channel with little cross cou- 

pling between outputs, steady state errors within 

10% for the given scan commands, and well 

damped responses. 

4.2 Controller synthesis 
The desired c losed- loop model should be cho- 

sen as low order as possible to fulfil the design 
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specifications. A diagonal matrix with first-order 

elements is the first choice for the desired closed 

-loop model. However, it was found that it had 

large interaction and mismatch after a long 

adjustment of weighting functions, based on the 

observation that the roll-off rate of the system 

appears to be of order 1/s 2 in most of the ele- 

ments of the system and that, for exact model 

matching, the number of poles and zeros differ- 

ence should be no less than that of the original 

system (Gao et al., 1989). Hence the desired 

closed-loop model is chosen to be the second 

-order system with wn= 17 rad/sec and ~'=0.8 to 

improve the model matching in this H= optimiza- 

tion. 

con z 289 
Tm= j + 2~w~s + w 2 Iz= s2+27.2s+289/2,  

(39) 

where [2 denotes 2 • 2 identity matrix. 

The weighting functions in Figs. 2 and 4 are 

chosen to be square and stable. The performance 

and stability of the feedback system depend on 

these weighting functions. The choice of these 

weighting functions plays a role to ensure the 

solvabilily of standard numerical algorithm when 

solving H= problems. In order to achieve good 

tracking accuracy, reasonable settling time and 

overshoot, W~ is chosen to be a first-order high 

-gain low pass filter. 

1.2s + 18 
14q=al-s+0.0012 I2, a ,= 1.0. (40) 

This weighting function puts comparatively 

heavy emphasis at low frequencies, thus a good 

tracking is expected. The zero of the weighting 

function is related with the settling time and 

overshoot, which is selected as -15 considering 

design specifications. The actuator penalty 

weighting 14~ reflects control input magnitude 

and limit, s the controller bandwidth by selecting 

We as a high-pass form. However, a diagonal 

matrix of constants for lk~ is recommended to 

avoid a higher-order controller unless the perfor- 

mances degenerate. For the seeker scan loop 

system, W2 is chosen considering the maximum 

permissible magnitude of the control input, Um,x 

= 2.5 volls. 

W2=ce212, a2=0.12. (41) 

W3 is related with the plant unmodeled dynamics 

such as output multiplicative uncertainty, and 

adjusts the bandwidth of closed-loop system. A 

first order high-pass filter is selected to achieve 

the closed-loop bandwidth of about 115 rad/sec. 

l/v3 IOs+l  . = a 3 ~ ~ 2 ,  a3 = 5. (42) 

To ensure good tracking accuracy and distur- 

bance attenuation at low frequencies, W4 is cho- 

sen as a low-pass filter. 

s + I00 _ 
W 4 = a 4 ~ l z ,  a4=0.15. (43) 

Wr can be used for the gain adjustments of each 

control channel and has a diagonal matrix of 

constants. 

Wr-- aJz, a4 = 1. (44) 

Wd is related to disturbances to the system, and 

usually selected as a diagonal matrix of constants, 

Wd=aslz, a5 =0.002. (45) 

W, has a diagonal matrix of constants in order to 

take into account a very small measurement noise. 

W,=:ad2, a6:0.0001. (46) 

The above weighting functions produce satisfac- 

tory performances for both control problems. The 

optimal values, 7min, for one-  and two-degree 

-of-freedom control problems are obtained as 1. 

63 and 1.50, respectively. Suboptimal controllers 

for 7 =  1.7 and 1.6 are selected for one- and two 

-degree-of-freedom control problems, respective- 

ly. 

5. S imulat ion  Resul t s  

The performance and robustness are evaluated 

and compared for two H= controller's. In this 

section, we will denote H= controllers designed 

using one- and two-degree-of-freedom control 

structures by ODOF and TDOF, respectively. 

5.1 Frequency responses 
Figure 5 indicates that the command following 

performances of ODOF and TDOF are good at 

low frequencies and the bandwidth requirement is 



354 Ho- Pyeong Lee 

~. o i iiiiiiii i iiii',i"r' " i~-'iiiii" i',-i-'~+"ii 

..,,o"~ i'/i!i !-i iiiiiH : 
-6o - i  i~ i i- i!:----i ~ i - i l K - -  i++ i - i i i i i - -  i r -v i i i  
.8o -i--i-i-'.i+i~ !--i--i- iiiii- ---i--4-- i-iiiii-----i--!-i-~, "" 

Fig. 5 

10 3 

FREQUENCY (RADISEC) 
Command following performance. 

2o 

-i---i i ii':L": . ~ : : : _ . _ _ ~  -~m -20 ~ 
-so --~ ~-i~d-"i i--i:iiiil- i l-ii-iiiii-----~--i-i i-i!!: 

"1 O0 0-1 100 101 1'0 2' ;'; '1'03 
FREQUENCY (RADISEC) 

Fig. 6 Disturbance rejection performance. 
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achieved in both controllers. 

The sensitivity to the output disturbances is 

shown in Fig. 6, which shows an acceptable shape 

for the required performance and the effect of the 

output disturbance at low frequencies is shown to 

be small. TDOF offers better disturbance rejec- 

tion performance than ODOF at low frequencies. 

5.2 Time responses 
The plant outputs and control inputs to I1 

O 0] r step reference input are shown in Fig. 7, 

together with the output by the desired closed 

-loop model, Tm. 

Time responses by ODOF and TDOF are very 

similar. The plant outputs are well coincident 
Z 

with the desired outputs. Maximum coupling O 

ratios between plant outputs are about 9%, where o 

the coupling ratio is defined as the percentage 
Fig. 8 

ratio of the peak value of the other channel 

output to the unit step input applied to one 

channel. The multivariable interaction between 

outputs channels is very small and it is due to the 

desired closed loop model which is completely 

uncoupled. Figure 8 shows the plant outputs and 

control inputs to [1 1] T step reference input. 

Time responses follow well the desired closed 

-loop responses and the transient characteristics 
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are satisfactory. The control inputs are within the 

maximum permissible magnitude, Umax=2.5 volts. 

5.3 Scanning performances 
Three kinds of scan pattern such as conical, 

rosette, and spiral scan patterns are designed to 

enlarge the field-of-view of the seeker during 
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scanning a target. The command inputs for gener- 

ating three scan patterns are obtained as follows: 

Conical  scan pattern 

R x ( t ) = f  cos O(t) (47) 

Ry( / )  = f  sin O(t) (48) 

Rosette scan pattern 

R ~ ( t ) = 2 f c o s  3 ( O ) t - - f  cos O(t) (49) 

R y ( t ) = 2 f  sin 3 0 ( t ) + f s i n  O(t) (50) 

Spiral scan pattern 

6?x( t )  = ( f / z )  O(t) c o s  O(t) (51) 

/;?y(t) = ( f / z )  O ( t ) s i n  O(t) (52) 

where f denotes instantaneous f ield-of-view. 

5.3 .1  M o d e l  u n c e r t a i n t y  

For  the seeker scan loop plant, there exists 

several sources to cause model ing errors. As the 

look angle of the gyro with respect to the missile 

centerline increases, the sp inning rate of the gyro 

also increases. Normally,  the look angle of the 

gyro is not zero dur ing  both scanning and target 

tracking phases. This shifts the carrier frequency 

of the signal processor which was assumed to be 

synchronized with the constant  sp inning  fie- 

quency of the gyro. Therefore the pole and gain of  

the base-band  model of the band pass filter 

(BPF) are different from the nomina l  value a~= 

--50.3. Thus we assume that uncertainties are 

involved with the pole of  the base-band  model of 

the BPF (Hwang et al., 1995). Note that this pole 

affects system stability dominant ly .  

5 .3 .2  S c a n n i n g  p e r f o r m a n c e  e v a l u a t i o n  

The nomina l  and perturbed responses to three 

scan patterns are shown in Figs. 9-14, together 

with reference scanning commands.  

The performance robustness is evaluated when 

the nomina l  pole of BPF is perturbed by-25. This 

value corresponds to the percentage deviat ion of 

50% from its nominal  value. For  scanning perfor- 

mances of ODOF,  the nomina l  responses are 

good, but the perturbed responses are not satisfac- 

tory because at that time the steady state errors 

are beyond 10% for conical scan command.  For 

scanning performances of T D O F ,  the nomina l  

and perturbed responses are very similar to each 
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other despite the model uncertainty. Thus the 

c losed- loop system with TDOF is more robust to 

model uncertainty than that with ODOF, while 

the former controller structure is more complex. 

6 .  C o n c l u s i o n s  

Two H= controllers for a seeker scan loop 

system have been presented for the purpose of 

improving scanning performances. The control- 

lers have been designed in the framework of the 

standard H= optimization problem by combining 

the mixed sensitivity and model matching prob- 

lems. The proposed H= control problems can deal 

with not only frequency domain specifications but 

also time domain ones such as multivariable 

interaction between output channels, contrary to 

the mixed sensitivity problem. In particular, a 

new two-degree-o~freedom control structure 

was also introduced to enable better control 

performance. 

The proposed H= controllers satisfy the design 

requirements, and especially show good scanning 

performances for three scan patterns. The two 

-degree-o~freedom H~ controller shows better 

performance and robustness than one-degree-of  

-freedom H~ controller, but both controllers are 

very effective for the seeker scan loop system. 
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